Get it on Google Play
Graphing Calculator by Mathlab: User Manual
Get it on Google Play
  • Home
    • Introduction
    • PRO Features vs. FREE Version
    • Frequently Asked Questions, FAQs >
      • 1. How to Change the Number Format?
      • 2. How to Set Up the Separators Between Thousands?
      • 3. How to Set Precision?
      • 4. How to Send Feedback with Comments?
      • 5. How to import/export the library?
      • 6. How to Print Results?
      • 7. How to Make the Calculator Show the Results?
      • 8. How to Transport Calculation Results to other Programs?
      • 9. How to Transport Table to Other Platforms?
      • 10. How to Turn Off (or on) Vibration?
      • 11. How to Change the Language?
  • 1. Basics
    • 1.1. Navigation
    • 1.2. UI Elements
    • 1.3. Keyboard
    • 1.4. Input, Enter, Delete, Clear and UNDO Buttons
    • 1.5. Workspace Area
    • 1.6. Editing the Expression/Equation
    • 1.7. Using the Last Answer
    • 1.8. Writing Comments
    • 1.9. Clear, Copy & Paste Commands
    • 1.10. Rearranging Rows
  • 2. Settings
    • 2.1. General
    • 2.2. Calculator
    • 2.3. Graph
  • 3. Library
    • 3.1. Constants
    • 3.2. Functions
    • 3.3. How to Save Calculation Result/Graph to Library?
  • 4. Graph Mode
    • 4.1. 2D Graphing
    • 4.2. 3D Graphing
    • 4.3. Enlarging the Graph Area
    • 4.4. Changing to White Background
    • 4.5. Hide Keyboard
    • 4.6. Degree and Radian Scales
    • 4.7. Fixed Scale
    • 4.8. R-axis Scale
    • 4.9. Logarithmic Scale
    • 4.10. Tracing Values and Slopes
    • 4.11. Special Points: Roots and Criticals
    • 4.12. Intersections of Graphs
    • 4.13. Set Domain
    • 4.14. Show All - Roots, Critical Points and Intersections
    • 4.15. Fullscreen
  • 5. Table Mode
    • 5.1. Sharing of Functions
    • 5.2. 2D Table
    • 5.3. 3D Table
    • 5.4. Edit Functions
    • 5.5. Scroll Results
    • 5.6. Results Precision
    • 5.7. Zoom Controls
    • 5.8. Save and Load Table
    • 5.9. Table of Trigonometric Functions
  • 6. Numbers and Number Sense
    • 6.1. Decimals
    • 6.2. Fractions >
      • 6.2.1. Mixed Fractions
      • 6.2.2. Complex Fractions
      • 6.2.3. Converting Decimals to Fractions
      • 6.2.4. Converting Fractions to Decimals
    • 6.3. Percents
    • 6.4. Scientific Notation
    • 6.5. Engineering Notation
    • 6.6. Rounding Numbers
    • 6.7. Integer and Fractional Parts >
      • 6.7.1. Integer Part of a Number >
        • 6.7.1.1. Ceiling
        • 6.7.1.2. Floor
        • 6.7.1.3. Half Down
        • 6.7.1.4. Half to Even
        • 6.7.1.5. Half to Infinity
        • 6.7.1.6. Half to Odd
        • 6.7.1.7. Half to Zero
        • 6.7.1.8. Half Up
        • 6.7.1.9. Truncate
      • 6.7.2. Greatest Integer is the Floor Function
      • 6.7.3. Least Integer is the Ceiling Function
      • 6.7.4. Fractional Part of a Number
    • 6.8. Order of Operations
    • 6.9. Least Common Multiple
    • 6.10. Greatest Common Divisor
    • 6.11. Modulo
    • 6.12. Binary, Octal, Decimal, Hexadecimal Numbers
    • 6.13. Complex Numbers
    • 6.14. The Polar Form of Complex Numbers
    • 6.15. Polar to Rectangular Coordinates
  • 7. Introductory Algebra
    • 7.1. Arithmetic Operations
    • 7.2. Exponents
    • 7.3. Absolute Values
    • 7.4. Variables
    • 7.5. Evaluating Expressions
    • 7.6. Polynomials
    • 7.7. Roots
    • 7.8. Logarithms
  • 8. Equations in One Variable
    • 8.1. Linear Equation
    • 8.2. Absolute Value Equation
    • 8.3. Quadratic Equation
    • 8.4. Cubic Equation
    • 8.5. Polynomial Equation
    • 8.6. Rational Equation
    • 8.7. Radical Equation
    • 8.8. Exponential Equation
    • 8.9. Logarithmic Equation
  • 9. Inequalities in One Variable
    • 9.1. Inequality Symbols
    • 9.2. Linear Inequalities
    • 9.3. Absolute Value Inequalities
    • 9.4. Quadratic Inequality
    • 9.5. Polynomial Inequalities
    • 9.6. Rational Inequalities
    • 9.7. Compound Inequalities
    • 9.8. Inequalities with Constants
  • 10. Equations and Inequalities in Two Variables
    • 10.1. Linear Equations
    • 10.2. Systems of Linear Equations
    • 10.3. Graphing Inequalities
    • 10.4. Multiple Graphing of Inequalities
    • 10.5. Graphing Systems of Inequalities
    • 10.6. Solving Implicit Equations
  • 11. Algebraic Functions and Graphs
    • 11.1. Plotting Points
    • 11.2. How to Graph Functions?
    • 11.3. Setting the Applied Domain
    • 11.4. Linear Function
    • 11.5. Absolute Value Function
    • 11.6. Quadratic Function
    • 11.7. Polynomial Functions
    • 11.8. Rational Functions
    • 11.9. Radical Functions
    • 11.10. Logarithmic Functions
    • 11.11. Exponential Functions
    • 11.12. Sign Function
    • 11.13. Multiple Graphing
    • 11.14. Piecewise Functions
  • 12. Matrices and Vectors
    • 12.1. Matrix Operations
    • 12.2. Editing Matrix Entries
    • 12.3. Matrix Variables
    • 12.4. Matrix and Vector Forms
    • 12.5. Variable Matrix to System of Linear Equations
    • 12.6. Solving Systems of Linear Equations Using Matrix Equations
  • 13. Trigonometric Functions and Their Inverses
    • 13.1. Degrees and Radians >
      • 13.1.1. Degrees, Minutes and Seconds
      • 13.1.2. Bradis Table
    • 13.2. Trigonometric Function Keys
    • 13.3. Trigonometric Values of Special Angles >
      • 13.3.1. The 45- 45 - 90 Triangle
      • 13.3.2. The 30-60-90 Triangle
      • 13.3.3. Quadrantal Angles
      • 13.3.4. Coterminal Angles
    • 13.4. Trigonometric Values of 15 Degrees and Its Multiples
    • 13.5. Hyperbolic Function Keys
    • 13.6. Graphing Trigonometric Functions
    • 13.7. Graphing Hyperbolic Functions
    • 13.8. Graphing Inverse Functions
  • 14. Analytic Geometry
    • 14.1. Conic Sections
    • 14.2. Parametric Equations
    • 14.3. Polar Graphs >
      • 14.3.1. Limacon
      • 14.3.2. Cardioid
      • 14.3.3. Lemniscate
      • 14.3.4. Rose
      • 14.3.5. Other Polar Graphs
    • 14.4. 3D Graphing
  • 15. Limits
    • 15.1. Right - hand Limit
    • 15.2. Left - hand Limit
    • 15.3. Limit of a Function
    • 15.4. Limit of a Polynomial Function
    • 15.5. Limit of a Rational Function
    • 15.6. Limit of a Radical Function
    • 15.7. Limit of an Absolute Value Function
    • 15.8. Limit of a Trigonometric Function
    • 15.9. Limit of an Exponential and Logarithmic Function
    • 15.10. Limit of a Piece-wise Function
    • 15.11. Limits at Infinity
    • 15.12. Indeterminate Forms
    • 15.13. Limit of a Hyperbolic Function
  • 16. Derivatives
    • 16.1. First Derivative Key
    • 16.2. Second Derivative Key
    • 16.3. Third and Higher Derivative Keys
    • 16.4. Rules of Differentiation
    • 16.5. Derivatives of Polynomial Functions
    • 16.6. Derivatives of Rational Functions
    • 16.7. Dervatives of Trigonometric, Logarithmic and and Exponential Functions
    • 16.8. More on Derivatives
  • 17. Partial Derivatives
    • 17.1. Increments
    • 17.2. Dervative of a Function df (or dy))
    • 17.3. Derivative of a Function df (f not in terms of x)
    • 17.4. Other Partial Derivatives
    • 17.5. Higher Order Partial Derivatives
    • 17.6. Total Derivates
  • 18. Definite Integral
    • 18.1. Definite Integral of Algebraic Functions
    • 18.2. Definite Integral of Trigonometric Functions
  • 19. Basic Statistics
    • 19.1. Summation Notation
    • 19.2. Product Notation
    • 19.3. Minimum and Maximum
    • 19.4. Factorial, nCr and nPr
    • 19.5. Measures of Central Tendency >
      • 19.5.1. Mean from Ungrouped Data Set
      • 19.5.2. Mean from Frequency Distribution Table
      • 19.5.3. Median from Ungrouped Data Set
      • 19.5.4. Mode
    • 19.6. Measures of Variability >
      • 19.6.1. Range
      • 19.6.2. Interquartile Range and Quartile Deviation
      • 19.6.3. Mean Absolute Deviation
      • 19.6.4. Variance and Standard Deviation
      • 19.6.5. Coefficient of Variation
    • 19.7. Measures of Position
    • 19.8. Bivariate Data Analysis >
      • 19.8.1 Covariance
      • 19.8.2. Correlation Coefficient
      • 19.8.3. Scatter Plot and Regression Line
  • 20. Special Functions
    • 20.1. Gamma Function
    • 20.2. Logarithmic Gamma Function
    • 20.3. Digamma Function
  • 21. List of ALL Functions
    • 21.1. Arithmetics
    • 21.2. Algebra
    • 21.3. Trigonometry
    • 21.4. Statistics
    • 21.5. Calculus

1.3. Keyboard

Many of the keyboard buttons contain extra functions. These buttons include: 
x ^, ln, i, x, sin, cos, tan, n!, degree key, /x/, root key, parentheses keys, and others.

To use these extra functions:

1) hold the button to see other functions available on that key
2) then
              a) slide either left or right and select the function you want to enter, or
              b) tap the button multiple times to switch between functions

The active function can be seen directly on the input field as you switch between the functions.


Below is a sample pop-up of the available functions under the sin (sine) key.
Other functions available on this key are arcsin (inverse of sine), csc (cosecant - the reciprocal of sine) and arccsc (arccosecant - the inverse of cosecant). The key highlighted in green is the active key.


Picture


Hold sin and slide right to select csc, then release to enter. To cancel a selection, slide off of the pop-up and let go.

An alternative way to enter arcsin is to tap the sin key twice. Tap three times to enter csc. Tap four times to enter arccsc. Generally, the number of taps corresponds to the order of the function in the pop-ups. To use a certain key in the pop-up, just tap according to the order of the function you want to use.


Picture

Hold e to switch to hyperbolic functions. Hold π to switch back to trigonometric functions.

Picture
Picture
Latin and Greek Keyboards
Use the keys on the top left of the main keyboard to switch between the default math keyboard, the Qwerty keyboard and the Greek keyboard.

Latin Keyboard (a-z)

To enter an equation or argument using the Latin a-z characters, tap a-z to use the Qwerty keyboard.
Picture
Tap the shift key to use uppercase letters.
Picture
Picture
See the example below.
Picture
Greek Keyboard
To enter an equation or arguments using Greek characters, switch to the Greek keyboard (α - ω).
Picture
Tap the shift key to use uppercase Greek letters.
Picture
Picture
See the example below.
Picture
Resizing the Keyboard
To hide keys not in use and/or enlarge other keys, resize your keyboard by dragging the default keyboard left or right.

You can enable this feature in: Settings > General > Resize keyboard. See the example in the following video:
Picture
Picture
Picture
Keyboard map
Below is a map of the keys and their respective pop-ups. The buttons shown in color are the main functions while the black buttons to the right are the extra functions listed under the same key. 

The order of the function key in the pop-up list tells you how many times you need to tap to enter a function. For instance, the degree button also has the % and dms functions. The main function of this button is degree. To input the degree symbol, tap the button once. Tap twice for % and three times for dms.

Picture

List of Pop-ups


Pop-up
Function
# of taps
Picture
sin 
arcsin 
csc
arccsc
1
2
3
​4
Picture
cos
arccos
sec
arcsec
1
2
3
​4
Picture
tan
arctan
c
ot
arccot
1
2
3
​4
Picture
cosh
arccosh
s
ech
arcsech
1
2
3
​4
Picture
sinh
arcsinh
csch
arcsch
1
2
3
​4
Picture
tanh
arctanh
coth
arccoth
1
2
3
​4
Picture
degree symbol
%
dms
1
2
​3
Picture
n! (factorial key)
nCr
nPr
​
length
sum
min
max
avg
m
edian
​
mode
var
stdev
cov
corr
varp
stdevp
covp
corrp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Note: Rather than counting the number of taps, it is easier to slide between the functions in the pop-up.

Picture
/x/
//v//
/A/
tr
adj
A^T,
1
2
3
4
5
​6
Picture
x ⁿ
x’ 
x”
1
2
​3

Picture
x
y
z
r
θ
t
1
2
3
4
5
​6
Picture
square root
cube root
4th root 
1
2
​3
Note: to use the nth root, input a 4th root and replace the index "4" with the desired root.
Picture
i
Re
Im
conj
arg
1
2
3
4
​5

Picture
ln
log (base 10)
log2 (log base 2)


1
2
3

Note: to enter a logarithm with base n, tap 3 times for log2 and replace the index "2" with the desired base
Picture
 decimal point
comma
1
​2
Picture
fraction bar
division sign (same operation) 
1
​2
Picture
multiplication sign
dot (same operation) 
1
​2
Picture
open parentheses
open brackets
less than symbol
1
2
​3
Picture
closed parentheses
closed brackets
greater than symbol
1
2
​3
Picture
equal sign
Ans (lets you use the previous answer)
1
​2

Picture
Uppercase letters are often used to name a matrix, set, or when converting numbers from decimal to hexadecimal to binary to octal, or vice versa.

Hold 1 to enter A.
Hold 2 to enter B.
Hold 3 to enter C.
Hold 4 to enter D.
Hold 5 to enter E.
Hold 6 to enter F.
NEXT: 1.4. Input>
list of contents
Powered by Create your own unique website with customizable templates.