Get it on Google Play
Graphing Calculator by Mathlab: User Manual
Get it on Google Play
  • Home
    • Introduction
    • PRO Features vs. FREE Version
    • Frequently Asked Questions, FAQs >
      • 1. How to Change the Number Format?
      • 2. How to Set Up the Separators Between Thousands?
      • 3. How to Set Precision?
      • 4. How to Send Feedback with Comments?
      • 5. How to import/export the library?
      • 6. How to Print Results?
      • 7. How to Make the Calculator Show the Results?
      • 8. How to Transport Calculation Results to other Programs?
      • 9. How to Transport Table to Other Platforms?
      • 10. How to Turn Off (or on) Vibration?
      • 11. How to Change the Language?
  • 1. Basics
    • 1.1. Navigation
    • 1.2. UI Elements
    • 1.3. Keyboard
    • 1.4. Input, Enter, Delete, Clear and UNDO Buttons
    • 1.5. Workspace Area
    • 1.6. Editing the Expression/Equation
    • 1.7. Using the Last Answer
    • 1.8. Writing Comments
    • 1.9. Clear, Copy & Paste Commands
    • 1.10. Rearranging Rows
  • 2. Settings
    • 2.1. General
    • 2.2. Calculator
    • 2.3. Graph
  • 3. Library
    • 3.1. Constants
    • 3.2. Functions
    • 3.3. How to Save Calculation Result/Graph to Library?
  • 4. Graph Mode
    • 4.1. 2D Graphing
    • 4.2. 3D Graphing
    • 4.3. Enlarging the Graph Area
    • 4.4. Changing to White Background
    • 4.5. Hide Keyboard
    • 4.6. Degree and Radian Scales
    • 4.7. Fixed Scale
    • 4.8. R-axis Scale
    • 4.9. Logarithmic Scale
    • 4.10. Tracing Values and Slopes
    • 4.11. Special Points: Roots and Criticals
    • 4.12. Intersections of Graphs
    • 4.13. Set Domain
    • 4.14. Show All - Roots, Critical Points and Intersections
    • 4.15. Fullscreen
  • 5. Table Mode
    • 5.1. Sharing of Functions
    • 5.2. 2D Table
    • 5.3. 3D Table
    • 5.4. Edit Functions
    • 5.5. Scroll Results
    • 5.6. Results Precision
    • 5.7. Zoom Controls
    • 5.8. Save and Load Table
    • 5.9. Table of Trigonometric Functions
  • 6. Numbers and Number Sense
    • 6.1. Decimals
    • 6.2. Fractions >
      • 6.2.1. Mixed Fractions
      • 6.2.2. Complex Fractions
      • 6.2.3. Converting Decimals to Fractions
      • 6.2.4. Converting Fractions to Decimals
    • 6.3. Percents
    • 6.4. Scientific Notation
    • 6.5. Engineering Notation
    • 6.6. Rounding Numbers
    • 6.7. Integer and Fractional Parts >
      • 6.7.1. Integer Part of a Number >
        • 6.7.1.1. Ceiling
        • 6.7.1.2. Floor
        • 6.7.1.3. Half Down
        • 6.7.1.4. Half to Even
        • 6.7.1.5. Half to Infinity
        • 6.7.1.6. Half to Odd
        • 6.7.1.7. Half to Zero
        • 6.7.1.8. Half Up
        • 6.7.1.9. Truncate
      • 6.7.2. Greatest Integer is the Floor Function
      • 6.7.3. Least Integer is the Ceiling Function
      • 6.7.4. Fractional Part of a Number
    • 6.8. Order of Operations
    • 6.9. Least Common Multiple
    • 6.10. Greatest Common Divisor
    • 6.11. Modulo
    • 6.12. Binary, Octal, Decimal, Hexadecimal Numbers
    • 6.13. Complex Numbers
    • 6.14. The Polar Form of Complex Numbers
    • 6.15. Polar to Rectangular Coordinates
  • 7. Introductory Algebra
    • 7.1. Arithmetic Operations
    • 7.2. Exponents
    • 7.3. Absolute Values
    • 7.4. Variables
    • 7.5. Evaluating Expressions
    • 7.6. Polynomials
    • 7.7. Roots
    • 7.8. Logarithms
  • 8. Equations in One Variable
    • 8.1. Linear Equation
    • 8.2. Absolute Value Equation
    • 8.3. Quadratic Equation
    • 8.4. Cubic Equation
    • 8.5. Polynomial Equation
    • 8.6. Rational Equation
    • 8.7. Radical Equation
    • 8.8. Exponential Equation
    • 8.9. Logarithmic Equation
  • 9. Inequalities in One Variable
    • 9.1. Inequality Symbols
    • 9.2. Linear Inequalities
    • 9.3. Absolute Value Inequalities
    • 9.4. Quadratic Inequality
    • 9.5. Polynomial Inequalities
    • 9.6. Rational Inequalities
    • 9.7. Compound Inequalities
    • 9.8. Inequalities with Constants
  • 10. Equations and Inequalities in Two Variables
    • 10.1. Linear Equations
    • 10.2. Systems of Linear Equations
    • 10.3. Graphing Inequalities
    • 10.4. Multiple Graphing of Inequalities
    • 10.5. Graphing Systems of Inequalities
    • 10.6. Solving Implicit Equations
  • 11. Algebraic Functions and Graphs
    • 11.1. Plotting Points
    • 11.2. How to Graph Functions?
    • 11.3. Setting the Applied Domain
    • 11.4. Linear Function
    • 11.5. Absolute Value Function
    • 11.6. Quadratic Function
    • 11.7. Polynomial Functions
    • 11.8. Rational Functions
    • 11.9. Radical Functions
    • 11.10. Logarithmic Functions
    • 11.11. Exponential Functions
    • 11.12. Sign Function
    • 11.13. Multiple Graphing
    • 11.14. Piecewise Functions
  • 12. Matrices and Vectors
    • 12.1. Matrix Operations
    • 12.2. Editing Matrix Entries
    • 12.3. Matrix Variables
    • 12.4. Matrix and Vector Forms
    • 12.5. Variable Matrix to System of Linear Equations
    • 12.6. Solving Systems of Linear Equations Using Matrix Equations
  • 13. Trigonometric Functions and Their Inverses
    • 13.1. Degrees and Radians >
      • 13.1.1. Degrees, Minutes and Seconds
      • 13.1.2. Bradis Table
    • 13.2. Trigonometric Function Keys
    • 13.3. Trigonometric Values of Special Angles >
      • 13.3.1. The 45- 45 - 90 Triangle
      • 13.3.2. The 30-60-90 Triangle
      • 13.3.3. Quadrantal Angles
      • 13.3.4. Coterminal Angles
    • 13.4. Trigonometric Values of 15 Degrees and Its Multiples
    • 13.5. Hyperbolic Function Keys
    • 13.6. Graphing Trigonometric Functions
    • 13.7. Graphing Hyperbolic Functions
    • 13.8. Graphing Inverse Functions
  • 14. Analytic Geometry
    • 14.1. Conic Sections
    • 14.2. Parametric Equations
    • 14.3. Polar Graphs >
      • 14.3.1. Limacon
      • 14.3.2. Cardioid
      • 14.3.3. Lemniscate
      • 14.3.4. Rose
      • 14.3.5. Other Polar Graphs
    • 14.4. 3D Graphing
  • 15. Limits
    • 15.1. Right - hand Limit
    • 15.2. Left - hand Limit
    • 15.3. Limit of a Function
    • 15.4. Limit of a Polynomial Function
    • 15.5. Limit of a Rational Function
    • 15.6. Limit of a Radical Function
    • 15.7. Limit of an Absolute Value Function
    • 15.8. Limit of a Trigonometric Function
    • 15.9. Limit of an Exponential and Logarithmic Function
    • 15.10. Limit of a Piece-wise Function
    • 15.11. Limits at Infinity
    • 15.12. Indeterminate Forms
    • 15.13. Limit of a Hyperbolic Function
  • 16. Derivatives
    • 16.1. First Derivative Key
    • 16.2. Second Derivative Key
    • 16.3. Third and Higher Derivative Keys
    • 16.4. Rules of Differentiation
    • 16.5. Derivatives of Polynomial Functions
    • 16.6. Derivatives of Rational Functions
    • 16.7. Dervatives of Trigonometric, Logarithmic and and Exponential Functions
    • 16.8. More on Derivatives
  • 17. Partial Derivatives
    • 17.1. Increments
    • 17.2. Dervative of a Function df (or dy))
    • 17.3. Derivative of a Function df (f not in terms of x)
    • 17.4. Other Partial Derivatives
    • 17.5. Higher Order Partial Derivatives
    • 17.6. Total Derivates
  • 18. Definite Integral
    • 18.1. Definite Integral of Algebraic Functions
    • 18.2. Definite Integral of Trigonometric Functions
  • 19. Basic Statistics
    • 19.1. Summation Notation
    • 19.2. Product Notation
    • 19.3. Minimum and Maximum
    • 19.4. Factorial, nCr and nPr
    • 19.5. Measures of Central Tendency >
      • 19.5.1. Mean from Ungrouped Data Set
      • 19.5.2. Mean from Frequency Distribution Table
      • 19.5.3. Median from Ungrouped Data Set
      • 19.5.4. Mode
    • 19.6. Measures of Variability >
      • 19.6.1. Range
      • 19.6.2. Interquartile Range and Quartile Deviation
      • 19.6.3. Mean Absolute Deviation
      • 19.6.4. Variance and Standard Deviation
      • 19.6.5. Coefficient of Variation
    • 19.7. Measures of Position
    • 19.8. Bivariate Data Analysis >
      • 19.8.1 Covariance
      • 19.8.2. Correlation Coefficient
      • 19.8.3. Scatter Plot and Regression Line
  • 20. Special Functions
    • 20.1. Gamma Function
    • 20.2. Logarithmic Gamma Function
    • 20.3. Digamma Function
  • 21. List of ALL Functions
    • 21.1. Arithmetics
    • 21.2. Algebra
    • 21.3. Trigonometry
    • 21.4. Statistics
    • 21.5. Calculus

6.13. Complex Numbers

The set of complex numbers refers to the set of real and imaginary numbers. Any complex number can be written in the form a + bi, where a represents the real number part and bi represents the imaginary number part. In algebra, i  is used to denote the square root of -1. Hence i^2 is equal to -1.

Imaginary Number Key (i)
Other keys available on this button: Re, Im, conj, arg.

Tap the i  key once to use the imaginary number (i) key. Use this key when performing operations on complex numbers.

Examples
Simplify the following.
1. (2 – 3i) + (6 + 4i)
2. (2 – 3i) (6 + 4i)
3.  (2 – 3i) (6 + 4i)
3 + 5i
Calculator solutions
Type the expression as it appears with one on each line.
1) Type: (2-3i) + (6+4i)
2) Type: (2-3i)(6+4i)
3) Type: (2-3i)(6+4i) / (3+5i)
Picture

Real Number Part Function (Re)
Tap the i key twice to use the Re function. Given a complex number, this function will determine the real number part.

Examples
In each complex number below, identify the real number.
1.   3 + 4i
2.   15i

Calculator solutions
1) Tap i twice and type: 3 + 4i
2) Tap i twice and type: 15i
Picture

Imaginary Number Part Function (Im)
Tap the i key three times to use the Im function. Given a complex number, this function will identify the imaginary number part.

Examples 
In each complex number below, identify the imaginary number.
1.   3 + 4i
2.   15i

Calculator solutions
1) Tap i three times and type: 3 + 4i
2) Tap i three times and type: 15i
Picture

Complex Conjugate Function (conj)
Tap the i key four times to use the conj function. The conjugate of a complex number in the form a + bi is equal to a – bi. Use the conj function to determine the conjugate of a given complex number.

Examples
Write the conjugate of each complex number below.
1.    4 – 5i
2.   3i
3.   7 + 11i

Calculator solutions
1) Tap i four times and type: 4 – 5i
2) Tap i four times and type: 3i
3) Tap i four times and type: 7 + 11i
Picture

Complex Argument Function (arg)
Tap the i  key five times to use the arg function. The argument of a complex number is the measurement of the angle (in standard position) that describes the direction of the complex number on the complex plane. It can be measured in radians or degrees.

Examples
Find the argument of each complex number below.
1.   4 – 5i
2.  3i
3.  7 + 11i

Calculator solutions
1) Tap i five times and type: 4 – 5i
2) Tap i five times and type: 3i
3) Tap i five times and type: ​7 + 11i
Picture

Plotting The Imaginary Part of the Function

To plot the imaginary part of a function, type "Im" and enclose the expression of the given function.

Examples
Plot the imaginary part of each function below.
1) f(i) = 3 + 4i
2) f(x) = x /log x
3) h(i) = (2i + 3)(3i - 4)

Calculator solutions
1) Type in: Im(3 + 4i)
Picture
2) Type in: Im (x /log x)
Picture
3) Type in: Im((2i + 3)(3i - 4))
Picture
NEXT: 6.14. the polar form of complex numbers>
List of contents
Powered by Create your own unique website with customizable templates.